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Advanced modelling of short-fibre reinforced composites

ZUZANA MURČINKOVÁ1∗, VLADIMÍR KOMPIŠ2

In this paper, a Method of External Finite Element Approximation
(MEFEA) to model such problems like composites reinforced by short fibres
will be presented. MEFEA is an enhanced classic FEM with idea of external
approximations. There are shape functions in the discrete solution space that
do not belong to the infinite dimensional solution space. The domain is split
in subdomains (cells) and the approximation is built on each of these subdo-
mains independently of each other. The method is similar to Hybrid Trefftz
Finite Element Method, where Trefftz functions are used inside each element
(subdomain). The displacement and force boundary conditions are met only
approximately whereas the governing equations are fulfilled exactly in the vol-
ume for linear elasticity, making it possible to assess accuracy in terms of error
in boundary conditions. The main benefit is that the discretization can be done
directly on a 3D CAD geometry with all details (features) for the analysis.

K e y w o r d s: subdomain, Trefftz functions, fibre reinforced composite, rein-
forcing effect

1. Introduction

Boundary-type solution methodologies are now well established as alternatives
to prevailing domain-type methods like the FEM [3, 14] because of computational
advantages they offer by the reduction of the dimensionality and good accuracy for
the whole domain and simplifying data preparation for the model.

We deal with special type of domain, specifically the composite material, typ-
ical for its non-homogeneous structure. In the next part, the state of art of Trefftz-
-type methods is described. The MEFEA is Trefftz-type method applied to fibre
reinforced composites.

The Hybrid-Trefftz methods [5, 7, 9, 12] are boundary-type methods. They use
a set of trial functions, singular or non-singular, which a priori satisfy corresponding
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linear part of the governing differential equation inside the (sub-) domain (large
element).

The Method of Fundamental Solutions (MFS) [6, 8] is a boundary meshless
method that does not need any mesh in classical FEM meaning and in linear
problems, only nodes (collocation points) on the domain boundaries and a set of
source functions (fundamental solutions) in points outside the domain are necessary
to satisfy the boundary conditions. MFS has certain advantages over the BEM, as
it completely avoids the need for any integral evaluation and it leads to very simple
formulations in some problems. However, large number of both collocation points
and source functions are necessary, if the shape of the domain is complicated and
moreover, the resulting system of equations is ill-conditioned in some problems.
The source functions serve as the trial functions and are to be placed outside the
domain. The location of the source functions is vital to both the accuracy and
numerical stability of the solution. The MFS can be also included to Trefftz-type
methods.

Another boundary-type meshless method – the Boundary Point Method (BPM)
was developed in [10]. The BPM is based on the direct formulation of conventional
and hypersingular BIE employing favourable features of both the MFS and BEM.
It is well known that for the integration of kernel functions over boundary elements,
the shorter the distance between the source and field points, the more difficult it is
to evaluate them accurately because of the properties of fundamental solutions. In
the formulation “moving elements” are introduced by organizing relevant adjacent
nodes in order to describe the local features of a boundary such as position, curva-
ture and direction, over which the treatment of singularity and integration can be
carried out, a benefit not only for evaluating of integrals in the case of coincidence
points, but also for the versatility afforded by using unequally spaced nodes along
the boundary.

In this paper, an important application of the MEFEA (involved in Procision
software) to model such problems like fibre reinforced composites will be presented
and it will be compared to the solution of the problem with displacement-based
isoparametric FEM with polynomial order refinement (p-FEM [14]).

The MEFEA and description of subdomains are comprised in Chapter 2, nu-
merical results, computation of reinforcing effect, description of mechanical be-
haviour and comparison of MEFEA with p-FEM results are presented in Chapter 3
and conclusions are given in Chapter 4.

2. The method of external finite element approximation

The MEFEA uses specific finite elements called subdomains (cells) of arbitrary
shape. Ce’a introduced the idea of external approximation in 1964 [4]. The method
was developed by Aubin (1972) [2] and Apanovitch (since 1981) [1].

The MEFEA is an enhanced classic FEM with idea of external approximations.
The method does not need discretization by classical elements, however instead
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of elements the domain is divided into subdomains. The main benefit is that the
discretization can be done directly on a 3D CAD geometry without any defeaturing,
clean up or simplifications of geometry. The geometry can be left intact with all
the details in it for the analysis.

The method is familiar to Hybrid Trefftz Finite Element Method (HT-FEM)
[5, 7, 9], where Trefftz functions are used inside elements. The displacement and
force boundary conditions are met only approximately whereas the governing equa-
tions are fulfilled exactly in the volume for linear elasticity, making it possible to
assess accuracy in terms of error in boundary conditions.

2.1 D e s c r i p t i o n o f s u b d o m a i n

The subdomains can be recognized as large Trefftz elements since the Trefftz
functions are used inside each finite element – subdomain. In this paper, the
subdomains are named also as Apanovitch elements. It is also similar to hybrid-
-Trefftz elements as defined by Jirousek [7] with a little different derivation of the
elements. Apanovitch definition of the formulation is kept in this paper.

The domain is split into several subdomains and the approximation is built
on each of these subdomains independently of each other. It means that each
subdomain has its own set of approximation functions. Then, at the interface of
the subdomains, the discrete solution may be discontinuous (and therefore does
not belong to the solution space). But then these discontinuities can be penalized
by using, for example, Lagrange multipliers and get a solution that is ‘almost
continuous’ across the interface between two subdomains (i.e. the continuity is
then satisfied in the weak, integral sense).

The disadvantage is that in case of not properly divided domain, the match-
ing of the approximations at the interfaces is less accurate and it needs another
improvement of ‘mesh’.

The examples of subdomains used in the MEFEA are presented in Fig. 1.
According to weak formulation of the boundary value problem, it is necessary

to find function u ∈ V , which fulfils the abstract variation equation:

Fig. 1. Subdomains.
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a(u, v) = f(v) for any function v ∈ V, (1)

where V is the infinite dimensional solution space, a(u, v) is generally an unsym-
metrical bilinear form which is continuous on the space product V ×V and f(v) is
some linear form on V .

We can find function u ∈ V using the numerical methods and discretization
of weak formulation. We replace function u by its approximate Uh:

Uh =
n∑

i=1

C
(h)
i N

(h)
i from space Xh, (2)

where C
(h)
i and N

(h)
i are factors and basis functions, respectively.

Factors C
(h)
i in Eq. (2) are called degrees of freedom. In conventional Finite

Element Method, factors C
(h)
i are displacements of the nodes (or temperature). It

means C
(h)
i have physical meaning. In classical Ritz-Galerkin method, the factors

C
(h)
i have no physical meaning and no relation to any geometric entity.

In MEFEA the degrees of freedom have no physical meaning and further con-
tinuity of the field variable is not necessary. The method only insists that approx-
imate continuity and approximate fulfilment of the essential boundary conditions
be achieved. The unknowns Ci are not limited to being simple parameters. They
may alternatively be unknown of one of the independent variables.

There are three types of the degrees of freedom in the MEFEA: Boundary
Degrees of Freedom, Internal Degrees of Freedom and Concentrator Degrees of
Freedom.

2.1.1 Boundary Degrees of Freedom

Boundary degrees of freedom are factors responsible for the satisfaction of the
displacement conditions and continuity conditions on the dividers of subdomains
(along their common surfaces). The more degrees of freedom which are used to
model the boundary conditions, the closer they are approximated. They are defined
by integral:

Ci =
∫
S

GiUdS, (3)

where S is either the boundary of the domain or a divider surface, Gi are some
basis functions defined on the surface and U is the function to be approximated
(displacement, temperature).

The number of boundary degrees of freedom is increased, if the quality of
boundary condition fulfilment does not meet the convergence criteria.
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2.1.2 Internal Degrees of Freedom

Internal degrees of freedom are factors responsible for satisfaction of force
boundary conditions and for quality of the global solution. These factors have no
physical meaning and they are associated with volume of a subdomain.

2.1.3 Concentrator Degrees of Freedom

Concentrator degrees of freedom are factors responsible for the accurate simu-
lation of the stress state near a stress concentrator. These factors have no physical
meaning and they correspond to special basis functions as:

Uh =
n∑

i=1

C
(h)
i N

(h)
i +

m∑
i=1

cifi, (4)

where fi = 1
r is a concentrator basis function and ci, 1 ≤ i ≤ m, are the concen-

trator degrees of freedom.
Each of the degrees of freedom described above is associated with some ba-

sis function. These basis functions approximate the solution of boundary value
problem. Basis functions in the MEFEA exactly fulfil the governing differential
equations of the theory of elasticity in structural analysis or equations of heat con-
duction in thermal analysis. There are two types of functions: polynomial type
and non-polynomial type of special asymptotic behaviour (radial functions) and
they are intended to approximate the solution in stress concentration regions.

Whereas in exact solution it is insisted that the field variables itself have to
be equal on both sides of the boundary, in the MEFEA it is insisted only that
integrals (3) have to be equal.

2.2 D i s c r e t i z a t i o n

The examples of subdomains are in Fig. 1. The arbitrary shaped subdomains
with piecewise smooth parts of dividers are the “finite elements” – subdomains –
Apanovitch elements. The form and increasing number of smooth parts of their
dividers increase the solution time; therefore this choice is made only with reason
to increase the accuracy of approximation of solved domain boundary. It is neces-
sary to mention that the degrees of freedom are not associated with nodes in the
MEFEA, but nodes are needed for definition of subdomain geometry.

2.3 B a s i s f u n c t i o n s o f t h e s u b d o m a i n s

We show the different way of building the basis functions (compared to clas-
sical FEM). We describe it according to [1]. To build the basis functions, it is
necessary to enter base of initial space PK and build the space PΣ (subspace of
space PK) and PZ (supplement to subspace PΣ):
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PK = PΣ + PZ. (5)

Let P ⊂ Hm(K), where Hm(K) is Sobolev space – space of functions with
finite strain energy, P is finite dimensional space, further called as initial function,
and {Nk}, 1 < k < n is its base:

N =
n∑

k=1

bkNk, ∀N ∈ P, (6)

where bk are coefficients.
The matrix R of the system equations relates the coefficients of initial set of

functions and subdomain boundary degrees of freedom by:

RbT = ϕT, (7)

where R is the matrix m× n, b = (bk)n
k=1 is vector of coefficients and ϕ = (ϕi)m

i=1

is vector of subdomain boundary degrees of freedom.
The system of Eqs. (7) can be written in the form:

RΣbT
Σ + RZb

T
Z = ϕT, (8)

where RΣ is matrix m×m and RZ is matrix m× (n−m).
Multiplying Eq. (8) by matrix R−1

Σ from the left, we obtain the vector bΣ by
means of vectors bZ and ϕ as

bT
Σ = R−1

Σ ϕT −R−1
Σ RZb

T
Z . (9)

The expression (8) can be written:

N = NΣbT
Σ + NZb

T
Z , (10)

where NΣ = (Nk)m
k=1 and NZ = (Nk)n

k=n−m+1.

Substituting (9) into (10), we get:

N = NΣR−1
Σ ϕT +

(
NZ −NΣR−1

Σ RZ

)
bT
Z

=
m∑

k=1

ϕk(N)

(
m∑

i=1

NirikΣ

)
+

n−m∑
j=1

bZ
j

(
Nj+m −

m∑
l=1

Nl

m∑
k=1

rlkΣrkjZ

)
,

(11)
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where rikΣ, (1 < i, k < m) are elements of matrix R−1
Σ and rkjZ, (1 < k < m,

1 < j < n−m) are elements of matrix RZ.
In this way we obtain decomposition of N ∈ P = PK into elements of the new

base. We get basis functions of space PΣ:

NkΣ =
m∑

i=1

NirikΣ, 1 < k < m, (12)

where NkΣ are basis functions of space PΣ, rikΣ are elements of matrix R−1
Σ and

basis functions of space PZ are:

NjZ = Nj+m −
m∑

l=1

Nl

m∑
k=1

rlkΣrkjZ, 1 < j < n−m, (13)

where NjZ are basis functions of space PZ, and rkjZ (1 < k < m, 1 < j < n −m)
are elements of RZ.

We can see that for building the bases {NkΣ}m
k=1 and {NjZ}n−m

j=1 it is necessary
to enter base {Ni}n

i=1 of initial space PK.

3. Numerical results

We focus on simulation of mechanical behaviour of composite materials rein-
forced by regularly distributed straight unidirectional overlapping fibres using the
MEFEA.

3.1 D e s c r i p t i o n o f c o m pu t a t i o n a l m od e l s

Using the symmetry, a part of model in Fig. 2 is taken for numerical simulation.
The model is 3D solid model. The fibres are straight, cylindrical and regularly
distributed with overlapped configuration as indicated in Fig. 2. The ends of each
fibre are modelled as half-sphere to avoid singularity. The ideal cohesion between
matrix and fibre is assumed. The authors often introduce such form to simulate
materials reinforced by carbon nano-tubes (CNT) [11, 13].

The material of both matrix and fibre is considered to be isotropic linear
elastic. The interface between fibre and matrix is considered as perfect therefore
the fibre and matrix create the continous material without gaps and slip between
the matrix and fibre.

We decided to use the dimensionless model by reason that the model was
linear and in this manner we could re-calculate results for arbitrary material. Such
approach is common in scientific literature.

The constant displacement in the direction of fibre axis (y) equal to 5 · 105 is
prescribed in the whole upper surface. The matrix and fibre modulus of elasticity
ratio are 1 : 102, 1 : 103 and 1 : 104, Poisson’s ratio µ = 0.27. The length of fibres is
L = 50 and the radius R = 1, i.e. the aspect ratio (2∗R : L) is 1 : 25. The distance
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Fig. 2. 3D model.

between fibres is ∆x = ∆z = 10 in the first model and is ∆x = ∆z = 16 in the
second model, ∆y = 2 is for both models (Table 1). The fibres in the representative
volume contain only 1.2 vol.% (16R) of the volume of the composite material in
the first model and 3 vol.% (10R) in the second model (Table 1).

Displacements and stresses are evaluated along lines AB and CD in order to
obtain information on reinforcing effect as well as on accuracy of used numerical
models. Because of the regularly distributed fibres and symmetry conditions, the

T ab l e 1. Model parameters

Model % fibre of the Distance between Length of Radius Em : Ef Poisson’s

volume fibres fibres ratio

1. 1.2 vol.% ∆x = ∆z = 16

∆y = 2 50 1 1 : 102 µ = 0.27

2. 3.0 vol.% ∆x = ∆z = 10 1 : 103

∆y = 2 1 : 104
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Fig. 3. MEFEA model (3 vol.% of fibres) for matrix and fibre modulus of elasticity ratio
1 : 102, 1 : 103, 1 : 104 – 534 subdomains.

modelled region (control volume – CV) can be used for evaluation of the reinforcing
effect.

Figure 2 gives dimensions of the model, Fig. 3 shows the MEFEA model with
details of “mesh” and Fig. 4 shows arbitrary shapes of used Apanovitch elements
(subdomains). For the numerical simulations of the composite with FEM the model

Fig. 4. Arbitrary Apanovitch elements shapes.
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contains 4 628 tetrahedrons for matrix and fibre modulus of elasticity ratio 1 : 102,
1 : 103, 1 : 104 in comparison with 534 Apanovitch elements.

3.2 R e i n f o r c i n g e f f e c t

The total force acting on the composite is the sum of forces carried by each
constituent (composite – c, matrix – m, fibre – f):

F c = Fm + F f . (14)

The reinforcement in fibre direction ry, i.e. in the direction of the largest
reinforcing effect, can be calculated as follows:

ry =
F c

y

Fm
y

=
Ec

y

Em
y

, (15)

where F c
y is the resultant force which is obtained from the MEFEA and p-FEM

model (homogenized total force acting in the cross-section area perpendicular to
the fibre direction y) and Fm

y is the total force acting on matrix in the cross-
section area perpendicular to the fibre direction y, Ec

y is homogenized modulus of
elasticity of the composite in the fibre direction and Em

y is modulus of elasticity in
fibre direction of matrix.

The homogenized average (h-aver) stress σh-aver
yy in fibre direction can be es-

timated from the homogenized total force F c
y acting in the cross-section area per-

pendicular to the fibre direction y and the cross-sectional area Axz as:

σh-aver
yy =

F c
y

Axz
= Ec

yεc
yy ⇒ Ec

y =
σh-aver

yy

εc
yy

, (16)

where εc
yy is homogenized strain component (the other homogenized strain compo-

nents are zero for this case: εxx = εzz = εyz = εxz = εxy = 0). The homogenized
strain εc

yy can be obtained from the displacement of the upper part of the CV.
The computed reinforcement in fibre direction ry is 1.95 for the model con-

taining 1.2 vol.% of the volume of the composite material and 2.70 for the model
containing 3 vol.% for the ratio of matrix to fibre modulus of elasticity equal to
1 : 102 and for the ratio of radius to length of fibres equal to 1 : 50.

3.3 M e c h a n i c a l b e h a v i o u r o f f i b r e - r e i n f o r c e d c o m po s i t e

The results obtained by computational models containing 1.2 vol.% of short
fibres using MEFEA (Apanovitch elements) and the isoparametric FEM [14] with
the p-refinement (pFEM) are presented in the next part.
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Fig. 5. Stress von Mises-Apanovitch elements.

Figure 5 shows Stress von Mises plot for matrix and fibre modulus of elasticity
ratio 1 : 102 modelled by Apanovitch elements (σMISES

max = 15.2). The computed
value of Stress von Mises achieved by p-elements is σMISES

max = 13.6.

3.3.1 The fields along the fibre boundaries

Figure 6 shows displacement uy along the fibre boundaries (between points A
and B in Fig. 2) for matrix and fibre modulus of elasticity ratio 1 : 102 modelled

Fig. 6. Displacement uy along the fibres boundaries.
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Fig. 7. Stress τxy along the fibres boundaries.

by Apanovitch elements (uy max = 3.894 · 10−5) and p-elements (uy max = 3.893 ·
10−5), (the point A is in the left side). The difference is 0.026 %.

Figure 7 shows stress XY τxy along the fibre boundaries for matrix and fibre
modulus of elasticity ratio 1 : 102 modelled by Apanovitch elements (τxy max =
0.86) and p-elements (τxy max = 0.99), (the point A is in the left side). The
difference is 13.13 %.

3.3.2 The results along the fibre axis

Figure 8 shows the Stress von Mises along the fibre axis (between points C
and D in Fig. 2) for matrix and fibre modulus of elasticity ratio 1 : 102 modelled by
Apanovitch elements (σMISES (fibre axis)

max = 14.74) and p-elements (σMISES (fibre axis)
max =

13.40), (the point C is in the left side). The difference is 10 %.

Fig. 8. Stress von Mises along the fibre axis.
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3.3.3 Effect of matrix/fibre stiffness ratio

Resulting from analyses, the displacements and stresses are very sensitive to
the change of matrix/fibre stiffness ratio. The interface shear stress, responsible for
de-cohesion, is one of parameters that are sensitive to the change of matrix/fibre
stiffness ratio and also influence local and global behaviour of composite. The stress
in fibre is more sensitive to the change of matrix/fibre stiffness ratio compared to
stresses in the matrix (Table 2).

T ab l e 2. Effect of matrix and fibre modulus on elasticity ratio

Em : Ef Max. displacement uy Max. stress τxy Max. Stress von Mises

p-elements 1:102 3.893 × 10−5 0.99 13.4

1:103 2.831 × 10−5 1.90 29.4

1:104 2.581 × 10−5 2.10 33.1

4. Conclusions

In this paper, the computational simulation of composite material reinforced
with short fibres was performed using classical displacement FEM formulation using
p-refinement and a Trefftz-type FEM formulation called the Method of External
Finite Element Approximation (MEFEA). The reinforcing fibres are considered to
be unidirectional, straight and regularly distributed so that symmetry conditions
can be used to reduce the models. Some overlap is assumed between the fibres.
The stiffness of fibres is higher than the stiffness of matrix by two to four orders in
our examples.

The shear stresses on the surface between fibres and matrix are responsible for
the de-cohesion and the forces in fibres are critical for their load carrying capacity
in the composite. The stresses in fibres with large aspect ratio can exceed the
stresses in the matrix by several orders. This is an important property of fibre- or
tube-type reinforcements. The optimal aspect ratio would be such by which both
matrix and material would achieve their strength values by decisive load conditions
of the material. p-FEM gave both lower forces in fibres and shear, stresses on
the surface between the fibre and the matrix than corresponding values obtained
by the MEFEA. This can indicate better accuracy of the last method. Also the
computational time is smaller when Trefftz-type elements are used.

In this paper we wanted to show that the Trefftz-type elements using special
functions, which better approximate special type of domain such as composite
materials with inclusions, enable to reduce the problem. The other aim was to
show the influence of fibres on the displacement and stress fields in the matrix. We
want to continue in this research and the present results will be used for further
development of simulation materials with microstructure.



40 STROJNÍCKY ČASOPIS, 59, 2008, č. 1
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