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Analysis of a self-excited two-mass system

ALEŠ TONDL

A simple two-mass self-excited system is analysed. The stability of the
equilibrium position is investigated. Two alternatives of self-excitation are
considered – to the upper mass or to the lower mass. The passive and active
suppression means are investigated. The active suppression means are due to
the periodic variation of the upper mass.

K e y w o r d s: self-excited vibration, passive and active suppression means, para-
metric excitation by mass variation

1. Introduction

A two-mass chain self-excited system is considered characterized by the upper
mass m1 connected with the mass m2 by a spring having stiffness k1; mass m2

mounts have the stiffness k2 (see Fig. 1). A question arises whether such a sim-
ple model can give the sufficient information on a real system, e.g. high structure
induced by flow. In most cases the self-excited vibration of these structures corre-
sponds mostly to the first or second vibration mode and so on a simplified model
different effects can be analysed. When these first vibration modes and natural
frequencies are known it is possible to build corresponding simple model especially
when one- or two-mass concentrations exist.

The simple two-mass models have been analysed in several publications (see
e.g. in [1] where only passive suppression means are considered). The passive and
active suppression means for this two-mass model are analysed in [2], where the
upper mass is self-excited and the active means are due to the parametric excitation
given by stiffness variation of the lower mass mounts.

Two alternatives of self-excitation are considered in this contribution: Alter-
native I: mass m1 is self-excited (Fig. 1a), Alternative II: mass m2 is self-excited
(Fig. 1b). (The subsystem with upper mass m1 can be considered as a tuned
absorber.) For both alternatives upper mass m1 is varied.
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Fig. 1. Scheme of the system: a) Alternative I, b) Alternative II.

The lateral deflections are denoted by y1, y2. In most real systems like high
structures the deflections are horizontal, i.e. Fig. 1 is rather schematic. The damp-
ing and self-excitation are expressed by linear terms depending on y′1 or y′2. We
shall suppose that the damping and self-excitation are expressed by linear viscous
damping (of course, the self-excitation by the linear viscous damping with the
negative coefficient), and the equilibrium position is given by the trivial solution
(y1 = y2 = 0) of the differential equations of motion. Then we can limit the sta-
bility analysis on the linearized differential equations of motion because the aim of
the analysis is to stabilize the equilibrium position.

In this contribution both the passive as well as the active suppression means
will be analysed. The active means are given by the periodic variation of the upper
mass: m1 = m10(1 + e cos ωt) = m10(1 + εe0 cos ωt). The parametric excitation as
the means for self-excited vibration suppression using mass variation was analysed
first in [3] where a general analysis is presented and illustrated by an example of a
two-mass system.

Also the upper mass was varied there and so we can utilize some results pre-
sented and make a deeper analysis. The main result presented in [3] as an example
is as follows: The full suppression of vibration can be achieved at parametric exci-
tation frequency given by the difference of natural frequencies of the abbreviated
system (i.e. without small terms of the differential equations), when certain condi-
tions are met.

Let us mention a paper dealing with parametric excitation using mass variation
as the means for self-excited vibration suppression of the system with two degrees
of freedom where the motion is given by lateral and angular deflections (see [4]).

It will be useful for the further analysis to mention the general results pre-
sented in the paper [3] (see also the references there, especially [5]), which will be
presented in the next chapter.



STROJNÍCKY ČASOPIS, 59, 2008, č. 3 117

2. General results

Let us consider a mechanical system with n degrees of freedom and n masses
where only one mass is varied (the mass is expressed by the constant and harmonic
component). The governing differential equations after transformation: ω1t = τ ,
(ω1 =

√
k1/m10) and in the quasi-normal form, not considering the non-linear

terms, read:

y′′s + Ω2
s ys = ε

[
−

n∑
k=1

Θsky′k + e0

(
n∑

k=1

η sin ητ
n∑

k=1

ϑsky′k + cos ητ
n∑

k=1

Qskyk

)]
.

(1)

For our two-mass system Eq. (1) has the form (see [3]):

y′′s + Ω2
s ys = ε(αs1F1 + αs2F2), (s = 1, 2), (2)

F1 = e0 cos ητ [(1− a1)y1 + (1− a2)y2] + e0η sin ητ(y′1 + y′2)

− (κ1 + κ12) [(1− a1)y′1 + (1− a2)y′2] ,

F2 = (κ1 + κ12)M [(1− a1)y′1 + (1− a2)y′2]− κ2(a1y
′
1 + a2y

′
2),

η =
ω

ω1
.

Corresponding coefficients are in the Appendix.
The conditions for stabilizing the equilibrium position given by trivial solution

are formulated in [3]. Let us suppose that the system is unstable only for the j-th
normal vibration mode, i.e. only Θjj is negative. The stability conditions of
equilibrium position for η0 = |Θj + Θr| are:

Θjj + Θrr > 0, (3)

e2
0

(
η0ϑjr −

Qjr

Ωr

)(
η0ϑrj −

Qrj

Ωj

)
−ΘjjΘrr > 0. (4)

Similarly for η0 = |Θj −Θr|:
The first condition is equivalent with (3) and the second one is:(

Qjr

Ωr
− η0ϑjr

)(
η0ϑrj +

Qrj

Ωj

)
+ ΘjjΘrr > 0. (5)

For the considered two-mass system the condition (4) is not met and so for active
suppression it means that only the parametric excitation frequency η0 = Ω2 − Ω1

will be considered.
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There is an example in paper [3] where for the considered system with two
alternatives the condition (5) after rearranging reads:

e2
0α11α21Ω1Ω2 + Θ11Θ22 > 0. (6)

3. Alternative I

Let us start with the passive means. The equilibrium position will be stable
when both coefficients Θ11, Θ22 will be positive. Using the results in Appendix
((A.13)), coefficients Θ11, Θ22 (taking for κ1 = −β to distinguish excitation) are:

Θ11 = −α11β + K11κ12 + α21κ2,

Θ22 = −α21β + K22κ12 + α11κ2.
(7)

Fig. 2. α11
K11+α21

, α21
K22+α11

in dependence on the tuning coefficient q for different values

of mass ratio M .



STROJNÍCKY ČASOPIS, 59, 2008, č. 3 119

For this alternative the following will be considered: κ12 = κ2 = κ. Then the
stability conditions are:

κ >

[
α11

K11 + α21

]
β, κ ≥

[
α21

K22 + α11

]
β. (8)

A suitable case would be when both conditions are identical, i.e.:[
α11

K11 + α21

]
=
[

α21

K22 + α11

]
. (9)

For illustration Fig. 2 shows dependences of
[

α11
K11+α21

]
and

[
α21

K22+α11

]
on the

tuning coefficient q for three values of M(0.2, 1, 2) and for β = 0.03, κ12 = κ2 =
0.02. Intersection point of both curves exists only for the smallest M . So it is not
always possible to fulfil condition (9). In this case the combination of passive and
active means is suitable, as it will be shown further.

The parametric excitation of mass m1 is varied, i.e. m1 = m10(1+εe0 cos ωt).
The conditions (3) and (6) must be met to stabilize the equilibrium position at
η0 = Ω2 − Ω1. Condition (3) for our system reads:

−(α11 + α21)β + (K11 + K22 + α11 + α21)κ > 0. (10)

This is met for the given values of β and κ.

Fig. 3. Boundary value of e (denoted as
eb) in dependence on q for different M .

Fig. 4. Coefficient Θ11 in dependence on
q for different M .
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Condition (6) has the form:

ε2α11α21Ω1Ω2 + Θ11Θ22 = ε2α11α21q

+ [−α11β + (K11 + α21)κ][−α21β + (K22 + α11)κ] > 0.

(11)

Condition (6), taken into account real eccentricity e = εe0, has the form:

ε2α11α21q + ε2[−α11β + (K11 + α21)κ][−α21βκ + (K22 + α11)κ] > 0. (11a)

The boundary value of ε can be obtained from (11a) when replacing > by =.
This boundary value of e (denoted as eb) can be obtained from equation:

e2
b = ε2 [−α11β + (K11 + α21)κ][−α21β + (K22 + α11)κ]

α11α21q
. (12)

Figure 3 shows εb in dependence on q for different values of M and the same
coefficients as in Fig. 2. When e > eb then the equilibrium can be stabilized in
broader interval of parametric excitation frequency. For further information, Fig. 4
shows Θ11 in dependence on q for different M . For q < 0.8Θ11 is positive, which
means that passive means are sufficient because Θ22 is positive in the whole range
of q for the considered M .

4. Alternative II

Again first the passive means will be considered. The equilibrium position is
stable when both Θ11, Θ22 are positive:

Θ11 = K11κ12 − α21β, Θ22 = K22κ12 − α11β. (13)

Again for the passive means only it seems that for vibration modes the stability
boundary would be equal, i.e. Θ11 = Θ22 which means:

α21

K11
=

α11

K22
. (14)

Figure 5 shows these parameters in dependence on tuning coefficient q for
three values of M(0.05, 0.1, 0.2) and for εκ12 = εκ = 0.02 = εβ. It can be seen
that for all considered alternatives of M the intersection points exist. But if the
stability condition is not met then this tuning is not suitable for application of
parametric excitation because the necessary condition (3) would not be met. For
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Fig. 5. α21
K11

, α11
K22

in dependence on q for
different M .

Fig. 6. The dependence of eb on M for
different q.

successful suppression by parametric excitation only a single vibration mode can
be unstable before parametric excitation application (see also [7]).

For this alternative the boundary value eb is presented as a function of M for
three values of q (0.9, 1, 1.1) – see Fig. 6. Each curve is marked whether Θ11 is
negative/positive.

5. Conclusion

A simple two-mass self-excited system is analysed. As linear self-excitation
due to the negative linear viscous damping is considered the stability of the equi-
librium position can be determined by analysis of the linear differential equations
of disturbances, which are the linearized differential equations of motion. These
equations are transformed into the quasi-normal form.

Two alternatives of self-excitation (upper or lower mass) are analysed.
For the passive means (expressed by positive linear damping) the boundary

values are determined and illustrated in Fig. 2 (Alternative I) and Fig. 5 (Alter-
native II). The condition for the case when stability conditions for both vibration
modes merge into a single one is determined but this is not always possible to real-
ize especially when the mass ratio M is not small. For this case by the combination
of passive and active means a full suppression can be achieved.

The analysis results for the active suppression means by parametric excitation
due to the upper mass variation are presented and illustrated in Figs. 3, 4 and 6.

The variation of the mass can be realized in real system, e.g. by rotating
gears with unbalanced masses or crankshaft mechanism. By its constant rotation
the total reduced mass is varied periodically. The suppression effect occurs at
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parametric excitation frequency η0
∼= Ω2 − Ω1 and not at η0

∼= Ω1 + Ω2, which is
convenient by using mass variation because high rotation frequency is not necessary.

Appendix

Appendix I in the monograph [6] deals with the linear transformation of the
two-mass chain system (see Fig. 1) into the quasi-normal form. This system without
damping is governed by the following equations:

m1ÿ1 + k1(y1 − y2) = 0,

m2ÿ2 − k1(y1 − y2) + k2y2 = 0. (A.1)

By the transformation ω1t = τ , where ω1 =
√

k1/m1, Eqs. (A.1) get the form:

y′′1 + y1 − y2 = 0,

y′′2 −M(y1 − y2) + q2y2 = 0, (A.2)

M =
m1

m2
, q2 =

ω2
0

ω2
1

, ω2
0 =

k2

m2
, ω2

2 =
k1 + k2

m2
.

The natural frequencies of the system governed by Eqs. (A.2) are:

Ω1,2 =

{
1
2
(1 + M + q2)±

[
1
4
(1 + M + q2)2 − q2

]1/2
}1/2

. (A.3)

Applying transformation

y1 = u1 + u2,

y2 = a1u1 + a2u2, (A.4)

on Eqs. (A.2), they get the form:

u′′1 + Ω2
1 u1 = 0,

u′′2 + Ω2
2 u2 = 0. (A.5)

The following relations define coefficients a1, a2:
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a1 = M(q2 + M − Ω2
1 )−1,

a2 = M(q2 + M − Ω2
2 )−1. (A.6)

The inverse transformation (A.4) reads

u1 = α11y1 + α12y2,

u2 = α21y1 + α22y2. (A.7)

The coefficients α11, α12, α21, α22 are defined as follows:

α11 =
a2

a2 − a1
, α12 =

1
a1 − a2

, α21 =
a1

a1 − a2
, α22 = −α12. (A.8)

Some further relations read:

0 ≤ a1 ≤ 1, a2 ≤ 0,

a1a2 = −M,

(1− aj) = Ω2
j , (j = 1, 2), (A.9)

a1 = a2 = 1−M − q2,

Ω1Ω2 = q.

If we take into account the linear viscous damping b1, b12, b2, the two-mass chain
system is governed by the following equations:

m1ÿ1 + b1ẏ1 + b12(ẏ1 − ẏ2) + k1(y1 − y2) = 0,

m2 − b12(ẏ1 − ẏ2)− k1(y1 − y2) + b2ẏ2 + k2y2 = 0. (A.10)

Using the same time transformation as for (A.1) we obtain:

y′′1 + κ1y
′
1 + κ12(y′1 − y′2) + y1 − y2 = 0,

y′′2 −M [κ12(y′1 − y′2)− y1 − y2] + κ2y
′
2 + q2y2 = 0. (A.11)

After applying transformation (A.4) the following equations are obtained:
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u′′1 + Ω2
1 u1 + Θ11u

′
1 + Θ12u

′
2 = 0,

u′′2 + Ω2
2 u2 + Θ21u

′
1 + Θ22u

′
2 = 0. (A.12)

The following relations are for the coefficients Θjk, (j, k = 1, 2):

Θ11 = α11κ1 + K11κ12 + α21κ2,

Θ12 = α11κ1 + K12κ12 − α11κ2,

Θ21 = α21κ1 + K21κ12 − α21κ12,

Θ22 = α21κ1 + K22κ12 + α11κ2, (A.13)

K11 = α11(1− a1)2, K12 = α11(1− a1)(1− a2),

K21 = α21(1− a1)(1− a2), K22 = α21(1− a2)2.

The graphs and tables of important coefficients in dependence on the tuning
coefficient q for different values of mass M are presented in [6].
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