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Regression versus neuro-fuzzy model:
A comparison for tool wear estimation

VISHAL S. SHARMA1∗, MANU DOGRA2, RAMAN BEDI3,
PUNEET SHARMA4

To improve the overall efficiency of turning, it is necessary to have a
complete process understanding. To this end, a great deal of research has been
performed in order to quantify the effect of various cutting parameters on tool
wear. It is impossible to find all of the variables that impact tool wear in
turning. This paper presents the experimental investigation of machining Grey
Cast Iron (GCI) with uncoated carbide tools. Two models are developed for
tool wear estimation, the first model is regression based and the second one
is neuro-fuzzy based. These models are capable of estimating the wear rate
at different cutting conditions. The results obtained by both the models are
compared with the actual experimental results. Finally it was observed that
both the models are capable of predicting tool wear with good accuracy but
the regression model performed marginally better than the neuro-fuzzy model.

K e y w o r d s: tool wear, regression, fuzzy logic, Adaptive Neuro-Fuzzy Infer-
ence System (ANFIS)

1. Introduction

The most crucial and determining factor for successful optimization of the
manufacturing process and its automation in any typical metal cutting process is
tool wear. Thus monitoring of tool wear is an important requirement for realiz-
ing automated manufacturing. In finish turning, tool wear becomes an additional
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parameter affecting surface quality of finished parts. Due to its non-linear and sto-
chastic nature, predicting or monitoring tool wear is a difficult task. The quest for
tool wear estimation is based on the requirement that machining systems should
operate without human assistance and/or interruption. These systems should rec-
ognize and estimate most or all forms of the tool wear in metal cutting. This paper
deals with the estimation of gradual tool wear using two models, i.e. regression
and ANFIS.

2. Estimating tool wear

For analytical prediction of tool life, Taylor equation is used as presented in
Eq. (1):

V Tα = CT, (1)

where V is the cutting velocity in m min−1, T is tool life in minutes, α is tool life
exponent, CT is Taylor tool life constant.

Equation (1) is found to be good provided the cutting velocity varied over a
narrow range. This limitation is obvious, because the only cutting variable included
in Eq. (1) is cutting velocity, but it is known that the cut depth, cut width and tool
geometry all separately influence the life of a cutting tool. In order to overcome
these deficiencies Taylor and many others have developed an extended form of Eq.
(1), which includes terms for feed rate and depth of cut. This equation is as follows:

V Tαfn1dn2 = C1, (2)

where T , V are the same quantities as defined above, f is feed rate, d is depth of
cut, C1 is the tool life constant, n1, n2 are exponents.

The relationships of tool wear and tool life to the cutting conditions, such as
feed and speed are therefore essential for the economical utilization of the cutting
process. The classical formula interrelating those variables is the Taylor equation,
which can be stated as in Eq. (3):

T =
CT

V αfm
, (3)

where T is the mean tool life, V is the cutting speed and f is feed, CT and m are
constants that depend on tool and work piece materials.

3. Past works

Rahman et al. [1] presented a neural-network-based approach for on-line fault
diagnosis scheme, which monitored the level of tool wear, chatter vibration and
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chip breaking in a turning operation. The experimental results showed that the
neural network had a high prediction success rate.

Feng and Wang [2] developed an empirical model using non-linear regression
analysis with logarithmic data transformation during turning of steel (8620) HRB86
with carbide inserts having multiphase coatings. They studied an impact of work
piece hardness, feed, tool point angle, depth of cut, spindle speed and cutting time
on the surface roughness. The values of surface roughness predicted by the model
were then verified experimentally and observed that the model produced smaller
error.

Sharma et al. [3] used ANFIS model for predicting tool wear using cutting
forces, vibrations and acoustic emissions. They could establish close relation be-
tween the predicted and the actual tool wear values.

Ozel and Yigit [4] reported neural network modelling to predict tool flank wear
and surface roughness over the machining time for a variety of cutting conditions
in finish hard turning. Regression models were also developed in order to capture
process specific parameters. The data sets from measured tool flank wear were
employed to train the neural network models. Trained neural network models were
used predicting tool wear and surface roughness for other cutting conditions. A
comparison of neural network model with regression models is carried out. Predic-
tive neural network models are found more capable of predicting surface roughness
and tool flank wear within the range that they have been trained.

Ezugwa et al. [5] developed an Artificial Neural Network (ANN) model for
analysis and prediction of the relationship between cutting and process parameters
during turning of inconel-718 alloy. Input parameters for the ANN model are
cutting speed, feed rate, depth of cut, cutting time and coolant pressure. The
output parameters of the model are tangential force, axial force, spindle power,
surface roughness, average flank wear and maximum flank wear. The model consists
of three-layer back propagation neural network. A very good performance of the
neural network in terms of agreement with the experimental data was achieved.

Initial efforts to develop mathematical models for the prediction of tool wear
in the cutting process were dependent upon large amounts of experimental data.
These methods did not take into account the complex and diverse nature of the
metal cutting operations and uncertainty of the factors responsible for the tool
wear. The lack of an accurate model for the tool wear prediction has led re-
searchers to resort to other methods based on soft computing also. These systems
can take into account all factors responsible for tool wear in metal cutting. This
paper makes use of two methods for tool wear estimation. The first method is
conventional method, which makes use of regression model. The second method
uses soft computing approach for estimation, i.e. adaptive neuro-fuzzy inference
system. Then a comparison of estimated tool wear with an actual one by both
models is given.
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Detections of tool fracture have been successful however the technique of tool
wear monitoring seems to lack reliability in industrial setting and summarization
has not occurred yet. One of the problems is a lack of clear relationship between
the amount of tool wear and cutting parameters. Many researchers have given
theoretical models but machine tool structure and cutting process dynamics are so
complex that a theoretical model cannot be relied upon.

4. Experimentation

The turning operations were carried out for different cutting parameters as
shown in the Table 1.

The experiments are planned and conducted as per the Appendix I. In total,
36 experiments are conducted and 13 runs are used to construct the model. In
order to ensure the repeatability of experiments, each experiment is replicated
twice and average values of the tool wear are noted. The 13 experiments, which
are taken for creating model, are shown in the Appendix II. Then a regression
model is obtained and ANOVA table is formulated (Appendix III). After this, the
same set of experiments is used for adaptive neuro-fuzzy inference model. The
models constructed are evaluated for all the 36 runs. Further the results obtained
by both the models are compared with the actual experimental values.

T ab l e 1. Data of experiments

Work piece material Grey Cast Iron (GCI) hardness 220 BHN

carbon 2%, manganese 0.46%,

silicon 0.16%, phosphorus 0.04%

Tool material uncoated carbide inserts CNMG 120408 THM

Tool holder PCLNR2020 K 12

Cutting parameters

Speed Vc Feed f Depth of cut ap

45, 90, 112 m min−1 0.08, 0.14, 0.20, 0.26 mm rev−1 0.2, 0.4, 0.6 mm

5. Analysis of the tool wear

The data presented in the Appendix I are analysed by formulating an ANOVA
table. The objective is to determine which factors and factor interactions are
statistically significant in affecting the tool wear. The ANOVA table also indicates
the significance of the model obtained. ANOVA table is formulated as shown in
the Appendix III. The “Model F -value” of 13.75 implies the model is significant.
There is only a 2.69 % chance that a “Model F -value” this large could occur due to
noise. Values of “Prob > F” less than 0.0500 indicate model terms are significant.
In this case A and B are significant model terms, i.e. speed and feed.

The regression equation obtained for the tool wear in terms of cutting param-
eter is as follows:



STROJNÍCKY ČASOPIS, 59, 2008, č. 5–6 263

TW (VB) = [ + 0.30165− 2.25125E–003′Vc − 0.68117′f − 0.25456′ap

+ 9.38347E–006′V 2
c + 2.43968′f2 + 0.42646′ap2

+ 1.73393E–003′V ′
c f − 4.80638E–004′V ′

cap

+ 0.041056′f ′ap],

(4)

where Vc is speed, f is feed, ap is depth of cut, VB is tool wear.

6. Neuro-fuzzy model

6.1. B r i e f b a c k g r o u n d

Fuzzy logic methods have been used to model various highly complex and non-
linear systems based on a set of sample data and fuzzy “if-then rules”. A fuzzy
inference system can model the qualitative aspects of human knowledge without
employing any quantitative analyses. For describing the fuzzy modelling structure
for the tool wear prediction, it will be specified as follows:

Linguistic variables: Form the basic concept underlying fuzzy logic, i.e. a vari-
able whose values are words rather than numbers. The input linguistic variables to
be specified herein for the specific problem of tool wear modelling are the following:
speed (Vc), feed (f) and depth of cut (ap). The tool wear (VB) is used as the only
output variable.

Fuzzy sets: In contrast to a classical set a fuzzy set does not have a crisp
boundary, i.e. the transition from the case “belong to a set” to the case “not
belong to a set” is gradual. Normally this smooth transition is characterized by a
membership function that gives to the fuzzy sets flexibility in modelling commonly
used linguistic expressions.

Membership function (MF ): It is a curve that defines the way that each point
in the input space is mapped to a membership value (or degree of membership)
between 0 and 1. The membership function type can be any appropriate parame-
terized membership function like triangle, Gaussian or bell-shaped.

Linguistic rules: A set of linguistic “if-then” rules, which operate on the
defined linguistic variables. A single fuzzy “if-then” rule assumes the form “if x
is A then y is B” where A and B are linguistic values defined by fuzzy sets on
the ranges (universe of discourse) X and Y , respectively. The if-part of the rule
“x is A” is called the antecedent or premise, while the then-part of the rule “y
is B” is called the consequent or conclusion. Fuzzy “if-then” rules with multiple
antecedents are often used e.g. as follows:

The resulting output after the described fuzzy logic method has to be defuzzi-
fied or else converted to a crisp value by using any of the available defuzzification
methods, like the centre of gravity method etc. The membership functions used
to represent linguistic variables may have an important effect on the modelling
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performance as the type of the MF being used determines when a given rule is to
be put in effect (in fuzzy logic “the rule is fired”) or not.

6.2. A r t i f i c i a l N e u r a l N e t w o r k s

Artificial Neural Networks (ANNs) are very efficient in adaptation and learn-
ing and for this reason they are used as modelling tools in a number of applications.
An ANN is made of three types of layers: an input layer which accepts the input
variables, herein S(Vc), F (f), D(ap) set of hidden layers (one or more), and an
output layer made of one neuron that in the case examined herein gives the tool
wear (VB). Hidden and output layers are composed of a number of neurons that
perform a specific non-linear function such as sigmoid. The neurons of one layer are
interconnected to the neurons of the pre- and after- layers through weighted links.
Each neuron of the hidden and output layers is offset by a threshold value. The
back-propagation training algorithm is commonly used to iteratively minimize the
cost function with respect to the interconnection weights and neuron thresholds.
The training process is terminated either when the Mean-Square Error (MSE) be-
tween the measured data points and the predicted ANN values for all elements in
the training set has reached a pre-specified threshold or after the completion of a
pre-selected number of learning iterative processes, called learning epochs.

6.3. A d a p t i v e N e u r o - F u z z y I n f e r e n c e S y s t e m (AN F I S)

Although the fuzzy inference system has a structured knowledge representa-
tion in the form of fuzzy “if-then” rules, it lacks the adaptability to deal with
changing external environment. Therefore neural network learning concepts have
been incorporated in fuzzy inference systems, resulting in adaptive neuro-fuzzy
modelling. The adaptive inference system is a network that consists of a number
of interconnected nodes. Each node is characterized by a node function with fixed
or adjustable parameters. The network is “learning” the behaviour of the available
data during the training phase by adjusting the parameters of the node functions
to fit the data. The basic learning algorithm, the back propagation, aims on the
minimization of a set measure or a defined error, usually the sum of squared dif-
ferences between the desired and the actual model outputs. The fuzzy modelling
was first explored by Takagi and Sugeno [6, 7]. The ANFIS architecture that was
used in the present study was based on the first order Takagi and Sugeno model
and is schematically presented in Fig. 1.

It was assumed that the tool wear (VB) is a function of speed [S(Vc)], feed
[F (f)] and depth of cut [D(ap)]. Thus S(Vc), F (f), D(ap) were considered as
the input parameters, while the tool wear which corresponds to each combination
of the three input parameters was considered as the unique output of the ANFIS
model. In this model, the ith rule for the prediction of tool wear can be expressed
as follows:
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Fig. 1. ANFIS architecture.

Rule I:

If S is Aj , F is Bk, D is Cl then fi = niS + oiF + piD + ri,

where j = 1, . . . , N1, k = 1, . . . , N2, l = 1, . . . , N3 and i = 1, . . . , N1N2N3N4. A, B

and C are the fuzzy sets defined for S, F and D, respectively. N1, N2, N3 and N4

indicate the number of membership functions defined on the indicated fuzzy input
variables, f is a linear consequent function defined in terms of the input variables
and n, o, p and r are the consequent parameters of the Takagi and Sugeno fuzzy
model [6, 7]. In this model, nodes of the same layer have similar functions, as
described below. The output of the ith node in layer l is denoted as Q1,i.

The fuzzy inference system shown in Fig. 1 is composed of four layers. Each
layer involves several nodes, which are described as the node functions. The output
signals from nodes in the previous layer will be accepted as the input signals in the
current layer. After manipulation by the node function in the current layer, the
output will serve as an input signal for the subsequent layer.

Layer 1 : The first layer of this architecture is the fuzzy layer. Each node of
this layer makes the membership grade of a fuzzy set. The membership relationship
between the output and input functions of this layer can be expressed as
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O1,j = mAj (S), j = 1, . . . , N1,

O1,k = mBk
(F ), k = 1, . . . , N2,

O1,l = mCl
(D), l = 1, . . . , N3.

(5)

In this layer, the membership function is Gaussian or bell-shaped membership
function.

Layer 2: Every node in the layer 2 is a fixed node, marked by a circle, whose
output is the product of all the incoming signals, i.e. T-norm operation:

O2,i = mAj
(S)mBk

(T )mCl
(D) = wi. (6)

The output signal wi denotes the firing strength of the associated rule. The firing
strength is also called “degree of fulfilment” of the fuzzy rule, which represents the
degree to which the antecedent part of the rule is satisfied.

Layer 3: Every node in layer 3 is an adaptive node (as the consequent pa-
rameters in this layer are to be adapted) marked by a square node with the node
function as:

O3,i = wifi, (7)

where wi =
wi∑N1N2N3

L=1 wL

is known as the normalized firing strength.

The consequent parameters of fi in this layer are to be adapted in order to
minimize the error between the ANFIS outputs and their experimental results.

Layer 4: Every node in the layer 4 is a fixed node, marked by a circle node
with the node function to compute the overall output by summation of all incoming
signals, i.e.:

O4,i =
∑

wifi = Nf . (8)

This ANFIS structure represents a three-dimensional space partitioned into
N ′

1 N ′
2 N ′

3 regions, each of which is governed by a fuzzy “if-then” rule. In other
words, the premise part of a rule defines the fuzzy region, while the consequent
part specifies the output within the region.

A hybrid learning algorithm is used to adapt the layer 1 parameters called
premise parameters or antecedent parameters and layer 3 parameters referred as
consequent parameters to optimize the network, which is a combination of back-
-propagation and the least squares method to estimate membership function pa-
rameters. More specifically, in the forward pass of the hybrid learning algorithm,
node outputs go forward till layer 3 and the consequent parameters are identified
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by the least squares method. In the backward pass, the error signals propagate
backward and the premise parameters are updated by the gradient descent.

6.4. C l u s t e r i n g o f d a t a

Clustering of numerical data is the basis of many classifications and system
modelling algorithms. The purpose of clustering is to identify natural groupings
of data from a large data set to produce a concise representation of the system
behaviour. Clustering technique can be used to generate a Sugeno type fuzzy in-
ference system that best models the data behaviour using a minimum number of
fuzzy rules and thus prevents the explosion of rules. The rules partition themselves
according to the fuzzy qualities associated with each one of the data clusters. Var-
ious methods of clustering have been described in the literature. The subtractive
clustering method, which is an extension of the mountain clustering method, has
been used in this paper to estimate the number of clusters and cluster centres in
the fatigue life data. This method assumes each data point as a potential cluster
centre and calculates a measure of the likelihood that each data point would define
the cluster centre, based on the density of surrounding data points. The steps of
the fuzzy model algorithm can be summarized as: (1) select the data point with
the highest potential to be the first cluster centre, (2) remove all data points in
the vicinity of the first cluster centre as determined by the range of influence (ra-
dius), and (3) iterate this process until all the data are within the radii of a cluster
centre. Data clustering was performed herein in order to assist ANFIS modelling
performance.

7. ANFIS model for tool wear estimation

Here ANFIS is used for estimation of the tool wear. ANFIS is a fuzzy inference
system implemented within the architecture and learning procedure of adaptive
networks. An adaptive network is a superset of all kinds of feed forward neural
network with supervised learning capability. ANFIS can be used to optimize mem-
bership function to generate stipulated input-output pairs and has the advantage of
being able to subsequently construct fuzzy “if-then” type rules representing these
optimized membership functions.

The model shown in Fig. 2 is ANFIS model for the tool wear estimation. It
considers the cutting speed, feed and depth of cut as input parameter and tool
wear as output.

Figures 3, 4, 5 show various membership functions of cutting speed, feed and
depth of cut for the proposed tool wear estimation model. These membership
functions are computed based on the input and output data, which are used to
train the system. The training patterns have been selected from a population of
patterns such that they represent all possible wear values in the population (Refer
Appendix II for training data). These are tuned using a hybrid system that contains
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Fig. 2. ANFIS Model.

Fig. 3. MF – membership function (cutting speed).

the combination of back propagation and least squares type method. The error
tolerance of 0 is used and number of epochs are 3. The “if-then rule” statements
are used to formulate the conditional statements that comprise fuzzy logic. By the
model, 13 rules have been obtained which are sufficient to match the requirements
of the data. Corresponding to each rule there is one output membership function.
Subtractive clustering has been used in this paper for estimating the number of
clusters and the cluster centres in a set of data. This algorithm is single pass and
fast. Here 13 cluster centres were located and for each cluster separate membership
function and rule is created as described below:
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Fig. 4. MF – membership function (feed).
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Fig. 5. MF – membership function (DOC).

Fig. 6. Comparison of models.

8. Results and conclusions

The regression and ANFIS models are used to estimate the tool wear for all 36
cutting runs. The regression model gave an over all accuracy of 91.67% while the
ANFIS model gave an over all 90 % accuracy. The results obtained are indicated
in Fig. 6. These models gave good estimation capabilities as compared to the
actual values. Thus it can be concluded that there is close relation between the
simulated results and the practical results obtained at similar cutting conditions
for predicting tool wear. The accuracy of the models depends upon the data point
selection used for creating the model. Figure 6 shows the comparison of models for
the tool wear estimation by using regression model and ANFIS model with actual
experimental values. To check the effectiveness of both the modelling techniques a
Chi-Square (χ2) test for goodness of fit was conducted on the data as per Appendix
IV. In this, the measure of discrepancy between observed and expected frequencies
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in each case is studied. The larger the value of Chi-Square (χ2), the greater is
the discrepancy between observed and expected frequencies. From Appendix IV
it is clear that the value of Chi-Square (χ2) in the case of regression model is low
0.078853 as compared with ANFIS model 0.103139. Thus it can be deduced that
the tool wear values of regression model are close to the experimental values. Hence
the model prepared through regression outperforms marginally the ANFIS model.
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Appendix I

L i s t o f e x p e r im e n t s

RUN Speed Vc Feed f Depth of Actual tool Tool wear Tool wear

number cut ap wear Vb regression ANFIS

[m min−1] [mm rev−1] [mm] [mm] [mm] [mm]

1 45 0.08 0.2 0.12 0.1492 0.1406

2 45 0.14 0.2 0.14 0.1457 0.1400

3 45 0.2 0.2 0.15 0.1598 0.1408

4 45 0.26 0.2 0.2 0.1914 0.1841

5 45 0.08 0.4 0.15 0.1458 0.1500

6 45 0.14 0.4 0.16 0.1428 0.1498

7 45 0.2 0.4 0.17 0.1573 0.1885

8 45 0.26 0.4 0.19 0.1895 0.1900

9 45 0.08 0.6 0.1 0.1765 0.1484

10 45 0.14 0.6 0.15 0.174 0.1892

11 45 0.2 0.6 0.19 0.189 0.1900

12 45 0.26 0.6 0.23 0.2217 0.1896

13 90 0.08 0.2 0.11 0.1068 0.1100

14 90 0.14 0.2 0.12 0.108 0.1084

15 90 0.2 0.2 0.15 0.1267 0.1275

16 90 0.26 0.2 0.17 0.1631 0.1700

17 90 0.08 0.4 0.1 0.0991 0.0793

18 90 0.14 0.4 0.11 0.1008 0.1121

19 90 0.2 0.4 0.12 0.12 0.1200

20 90 0.26 0.4 0.14 0.1568 0.1260

21 90 0.08 0.6 0.12 0.1255 0.1200

22 90 0.14 0.6 0.13 0.1276 0.1205

23 90 0.2 0.6 0.16 0.1474 0.1503

24 90 0.26 0.6 0.18 0.1847 0.1800

25 112 0.08 0.2 0.09 0.0999 0.1325

26 112 0.14 0.2 0.1 0.1034 0.1200

27 112 0.2 0.2 0.12 0.1244 0.1200

28 112 0.26 0.2 0.13 0.163 0.1642

29 112 0.08 0.4 0.09 0.0901 0.0900

30 112 0.14 0.4 0.12 0.094 0.0990

31 112 0.2 0.4 0.14 0.1156 0.1478

32 112 0.26 0.4 0.15 0.1547 0.1500

33 112 0.08 0.6 0.11 0.1143 0.1440

34 112 0.14 0.6 0.12 0.1188 0.1464

35 112 0.2 0.6 0.15 0.1408 0.1500

36 112 0.26 0.6 0.17 0.1804 0.2105
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Appendix II

Ex p e r i m e n t s u s e d f o r m od e l l i n g

RUN number Speed Vc Feed f Depth of cut ap Actual tool wear Vb

[m min−1] [mm rev−1] [mm] [mm]

1 45 0.14 0.2 0.14

2 45 0.08 0.4 0.15

3 45 0.26 0.4 0.19

4 45 0.2 0.6 0.19

5 90 0.08 0.2 0.11

6 90 0.26 0.2 0.17

7 90 0.2 0.4 0.12

8 90 0.08 0.6 0.12

9 90 0.26 0.6 0.18

10 112 0.2 0.2 0.12

11 112 0.08 0.4 0.09

12 112 0.26 0.4 0.15

13 112 0.2 0.6 0.15

Appendix III

A NO VA t a b l e f o r t o o l w e a r

Source Sum of DF Mean F -value Prob > F

squares square

Model 0.011836 9 0.001315 13.74807 0.0269 significant

A 0.003983 1 0.003983 41.64235 0.0075

B 0.005604 1 0.005604 58.58416 0.0046

C 0.0009 1 0.0009 9.408836 0.0547

A2 0.00019 1 0.00019 1.985683 0.2536

B2 0.000687 1 0.000687 7.180638 0.0751

C2 0.000661 1 0.000661 6.906364 0.0785

AB 0.000118 1 0.000118 1.229201 0.3485

AC 4.06E−05 1 4.06E−05 0.424139 0.5613

BC 2.27E−06 1 2.27E−06 0.023681 0.8875

Residual 0.000287 3 9.57E−05

Cor Total 0.012123 12
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Appendix IV

Tool wear TE Tool wear TR Tool wear TA (TR − T 2
E)/TR (TA − T 2

E)/TA

(experimental) (regression) (ANFIS) χ2 value of regression χ2 value of ANFIS

0.12 0.1492 0.1406 0.005715 0.003018

0.14 0.1457 0.1400 0.000223 0

0.15 0.1598 0.1408 0.000601 0.000601

0.2 0.1914 0.1841 0.000386 0.001373

0.15 0.1458 0.1500 0.000121 0

0.16 0.1428 0.1498 0.002072 0.000695

0.17 0.1573 0.1885 0.001025 0.001816

0.19 0.1895 0.1900 1.32E−06 0

0.1 0.1765 0.1484 0.033157 0.015785

0.15 0.174 0.1892 0.00331 0.008122

0.19 0.189 0.1900 5.29E−06 0

0.23 0.2217 0.1896 0.000311 0.008608

0.11 0.1068 0.1100 9.59E−05 0

0.12 0.108 0.1084 0.001333 0.001241

0.15 0.1267 0.1275 0.004285 0.003971

0.17 0.1631 0.1700 0.000292 0

0.1 0.0991 0.0793 8.17E−06 0.005403

0.11 0.1008 0.1121 0.00084 3.93E−05

0.12 0.12 0.1200 0 0

0.14 0.1568 0.1260 0.0018 0.001556

0.12 0.1255 0.1200 0.000241 0

0.13 0.1276 0.1205 4.51E−05 0.000749

0.16 0.1474 0.1503 0.001077 0.000626

0.18 0.1847 0.1800 0.00012 0

0.09 0.0999 0.1325 0.000981 0.013632

0.1 0.1034 0.1200 0.000112 0.003333

0.12 0.1244 0.1200 0.000156 0

0.13 0.163 0.1642 0.006681 0.007123

0.09 0.0901 0.0900 1.11E−07 0

0.12 0.094 0.0990 0.007191 0.004455

0.14 0.1156 0.1478 0.00515 0.000412

0.15 0.1547 0.1500 0.000143 0

0.11 0.1143 0.1440 0.000162 0.008028

0.12 0.1188 0.1464 1.21E−05 0.004761

0.15 0.1408 0.1500 0.000601 0

0.17 0.1804 0.2105 0.0006 0.007792

Σ = 0.078853 Σ = 0.103139


