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Modelling of composites reinforced by micro/nanoparticles
using dipoles

MÁRIO ŠTIAVNICKÝ1*, VLADIMÍR KOMPIŠ1, MICHAL KAUKIČ2

Composite materials reinforced by stiff particles possess higher stiffness,
strength, better wear resistance and superior thermal and electrical properties.
Special models are presented based on singular and hyper-singular source func-
tions for modelling composites reinforced with micro/nanoparticles. In global,
the model of each particle is represented with triple dipole which is describing
the interaction effect of the rigid particle with the matrix. The intensities of
the dipole are evaluated on detailed model from boundary conditions. The
displacement, stress and strain fields are described by combination of Kelvin’s
solution and dipole functions acting in infinite domain with singularity out-
side the domain. The governing equation is automatically satisfied by these
functions so it is only necessary to fulfil the boundary conditions. Using such
functions, also problems can be solved in which the stiffness of the particles is
much higher than the stiffness of the matrix and its one or two dimensions are
much smaller than the others, i.e. in the situations when the FEM and BEM
models do not work well.

K e y w o r d s: composite, nanoparticle, Method of Fundamental Solutions (MFS),
dipole functions, meshless method

1. Introduction

The nanomaterials reinforced by nanoparticles are excellent type of materials
with superior mechanical properties [1, 2]. Special properties of surface and volume
can be produced by changing the shape or material of nanoparticles and the mate-
rial of the matrix. It is known that only 1 % of particles might increase the stiffness
of the resulting material by 40% and gives the material special surface qualities
like wear resistance. It is therefore necessary to develop numerical procedures that
can overlap these countless many options in nanomaterials and model its behaviour
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under different circumstances. As it is true that in small volume might be up to few
billions of small particles, it would be imperial to produce numerical methods with
great efficiency in handling large amounts of particles. Omitting special methods
like fast multipole method [3], this is what classical methods like FEM and BEM
are lacking of [4–6]. In between any methods which require numerical tessellation
became extremely ineffective with large amount of multiscale volumes. Indeed this
is the case for nanomaterials with its billions of small nanoparticles enclosed in a
large area compared to size of these particles. The main idea in handling multiscale
models is not to use any discretization at all.

There are number of meshless methods which could be used for easy manipula-
tion of nanomaterials. Using special type of functions called Trefftz functions [7–9]
which apriori fulfil the governing equations puts these methods in advantage over
competition. Also fundamental solutions are a kind of Trefftz functions. A method
is presented here which has evolved from the Method of Fundamental Solutions
or MFS [10–13]. In the method of MFS none of the volumes are discretized, only
the boundaries are appropriately covered by field points in which it is necessary
to fulfil the boundary conditions. The points can be chosen randomly on any sur-
face, where are boundary conditions to be satisfied. Then it is necessary to choose
source points outside the domain of interest where the point forces are going to
act. By linear combination of the intensities of the forces acting in source points
it is possible to fulfil all boundary conditions. The problems could occur if the
distance of the source points measured from boundaries is small compared to the
distance between the source points because the source functions will be unable to
catch the large gradients between the field points and as a result degraded accuracy
might occur. On the other hand when the source points are located far from the
boundaries compared to the distance between them, a badly conditioned system

Fig. 1. Matrix reinforced by uniformly distributed particles with dipoles depicted. The
particle of interest with collocation points on the boundary is located in the centre.



STROJNÍCKY ČASOPIS, 59, 2008, č. 2 107

of equations might occur. Also it could be evaluated that for good accuracy there
is needed large number of both source and field points along the boundaries. In
problems with complicated surfaces this becomes less and less efficient. Compos-
ites reinforced with nanoparticles represent a problem in which a large number of
particles are present which can be of the same shape (Fig. 1) and thus a different
approach of modelling is more suitable.

In order to calculate the response of real material, a patch containing a given
amount of particles is considered. Increasing the number of the particles and
accordingly the size of the patch up to the point that the change in the response is
negligible, a patch with desired dimensions is retrieved where all particles beyond
this patch in a real material would have negligible influence on its response, and
so a large reduction of the problem can be done.

2. Method of source functions

In this paper the field caused by every particle in the composite material is
described by triple dipole located in the centre of particle. Note that this is only
accurate for particles that are of spherical shape, ellipsoidal, or smooth regular
surface, as it is supposed to be in this paper.

The displacement field in the direction i of a dipole (two collinear point forces
with opposite orientation) acting in direction p can be obtained from the displace-
ment field of a unit force acting in infinite homogeneous domain (Kelvin’s solution)
by differentiating it in the direction of the acting force [14–17], i.e.

U
(D)
pi = U

(F )
pi,p = − 1

16πG(1− ν)
1
r2

[
3r,ir

2
,p − r,i + 2(1− ν)r,pδip

]
, (1)

where G and ν are shear modulus and Poisson’s ratio of the material of the matrix,
δip is the Kronecker’s delta and r is the distance between the source point s where
the dipole is acting and a field point t, where the displacement is introduced, i.e.

r =
√

riri, ri = xi(t)− xi(s). (2)

With summation convention over repeated indices,

r,i = ∂r/ ∂xi(t) = ri/r (3)

are the directional derivatives of r.
Gradients of displacement field are
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and corresponding strain and stress fields are
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The summation convention does not act over the repeated indices p here.
The fields defined by a dipole have strong singularity in displacements and

hyper-singularity in strain and stress fields. Displacement and stress in the direc-
tion z of circular area by a dipole located at its centre are depicted in Figs. 2 and
3, respectively.

The stiffening effect of the particles in the matrix is computed from the patch
as a ratio of composite stiffness related to matrix stiffness (Fig. 4):

Fig. 2. Displacement of circular area by a dipole.
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Fig. 3. Stress component S333.

s =
Ec

Em
, (7)

where Em is Young’s modulus of the matrix which is known apriori and Ec is
Young’s modulus of the composite patch computed as follows:

Ec =
F u

A L
, (8)

where F is the total force acting on the patch computed as a sum of dipole intensi-
ties, A is the area of the patch projected onto the xy surface, u is the displacement
of the patch and L is the length of the patch in x3 direction.

Fig. 4. Patch for evaluation of stiffening effect.
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3. Results

It is assumed in the model that the particles are distributed periodically along
with linear elastic isotropic material and ideal bonding between matrix and particles
is considered. The Young’s modulus is E = 1000 and the Poisson’s ratio is ν = 0.3.
The diameter of the particles is ranging from R = 1 to R = 3.

Fig. 5. Displacement u3 of the particle.

Fig. 6. Displacement u1 of the particle.
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Fig. 7. Stiffening effect for different radius of particles.

Fig. 8. Stiffening effect for different number of particles in the patch.

In Figs. 5 and 6 the deformation is shown of the particle along its boundary
in the first and third direction simulated by triple dipole as compared to analytical
solution (for a rigid particle).

In Fig. 7 the stiffening effect of the particles in the matrix material is shown.
The stiffness is increasing with volume ratio of the particles in the matrix. Here 729
particles were equidistantly spaced, i.e. cube with 9 particles in each direction. The
dependence of the number of particles in the patch on stiffening effect is shown in
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Fig. 8 for radius of the particles R = 1. It can be seen that the stiffening converges
to some value with increasing number of particles contained in the patch. For
roughly 3000 particles in the patch the stiffening is more than 3% which might be
a good approximation of stiffening in infinite area given by properties of material
of the matrix and shape, dimensions and distribution of the particles.

4. Conclusions

The dipole model enables to simulate both near fields and far fields in material
reinforced by micro/nanoparticles and furthermore it introduces large reduction of
the model compared to classical FEM/BEM methods. The shear stresses in the
vicinity of the particle are important for evaluation of the strength and possible
de-cohesion/re-cohesion effects. The far fields are necessary for evaluation of the
reinforcing effect. The method is very simple, it does not need any elements and
integration and so it is truly meshless one.

Rigid particles are assumed to be used in present models but it is possible
to implement also deformable particles using iterative methods to establish force
equilibrium between particles and matrix, where the deformation of the particle
would be computed from the force acting on the particle boundary as a result of
particle-matrix interaction.

In the case that non-uniformly distributed particles would be contained in
the matrix, particles with different shapes or with different material properties or
in the case that non-homogeneous material of the matrix would be assumed, the
evaluation of stiffening effect would require integration of displacements and strains
along the boundaries of the patch.
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